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ABSTRACT 

i 

The existence of outliers in a data set and how to deal with them is an important problem in 

statistics. The Minimum Volume Ellipsoid (MVE) estimator is a robust estimator of location and 

shape; however its use has been limited because few computationally attractive methods exist to 

calculate it. Determining the MVE consists of two parts: finding the subset of points to be used 

in the estimate and finding the ellipse that covers this set. This paper will address the first 

problem. The proposed method of subset selection is called the Effective Independence 

Distribution (EID) method which chooses the subset by mnimizing determinants of matrices 

containing the data. This method is deterministic yielding reproducible estimates of location 

and scatter for a given data set. The EID method of finding the MVE is applied to several 

regression data sets where the true estimate is known. Results show that the EID method 

produces the subset of data in less than a second and that there is less than 6% relative error in 

the estimates. 



1. INTRODUCTION 

An important part of research in statistical theory is the robust estimation of location and 

covariance structure for a set of data. In this paper robust estimation will refer to those 

estimators that have high breakdown points [Rousseeuw & Leroy, 1987]. The estimator of 

interest here is called the Minimum Volume Ellipsoid (MVE). This has desirable robustness 

properties due to its high breakdown point of 50% [Woodruff & Rocke, 1993]. Few 

computationally reasonable methods of determing the MVE exist, especially in high dimensions 

and for large sample sizes, which makes it impractical for frequent use by statisticians. 

The MVE is defined as the subset of h points subject to the constraint that the ellipsoid 

that covers the points has minimum volume [Rousseeuw, 1985; Hawkins, 1993; Woodruff 

& Rocke, 1993]. As such, it is an estimator that has minimum volume and high content. From 

this definition of the MVE, it is apparent that finding a value of the estimator for a given data set 

has two parts. The first is to find the subset of data that is to be included in the estimate, and the 

second is to calculate the covering ellipsoid. An algorithm has been published (ref) that will find 

the exact covering ellipse for a set of points. However, it still requires exhaustive specification of 

all possible sub-samples, making it computationally intensive for large data sets. Thus, it should 

be apparent that the subset selection problem is the more computationally intensive of the two 

problems, and the one the remains to be solved.   It is this issue that will be addressed in this 

paper. 

Current methods of subset selection include the basic resampling method described by 

Rousseeuw and Leroy [1987] which randomly chooses subsets and then keeps the one yielding 

the minimum volume as the answer.   Improvements on this include heuristic search algorithms 



invesügated by Woodruff and Rocke [1993]. Yet another approach to finding the MVE is that of 

Hawkins [1993] called the Feasible Solution Algorithm (FSA). All of these methods are random, 

and they are not guaranteed to find the exact MVE for any finite amount of sampling. Clearly, 

none of these methods provide reproducible estimates of the MVE for a given data set. 

The FSA method determines a candidate subset of h points randomly and then weights 

each point until all of them are covered by an ellipse of smallest volume for the current set of 

points. Pairwise exchanges of covered for uncovered points is then made, and the weights are re- 

adjusted to cover the points. If the volume decreases, then the starting set of h points will not 

yield the MVE. This exchange continues, and if no pairwaise exchange leads to a covering 

ellipsoid of smaller volume, then the candidate set of points is a feasible solution. This continues 

for different candidate sets of h points, and the set yielding the smallest volume is accepted as the 

MVE. Hawkins does propose some improvements to this basic algorithm that provide a sppedup 

in the computations involved. 

Woodruff and Rocke [1993] investigate several heuristic search algorithms for finding the 

MVE. Specifically, these techniques are: simulated annealing, tabu search and genetic 

algorithms. In this paper, they show that the random search method is dominated by these. A 

basic genetic algorithm begins with many possible solutions to the MVE, and then new solutions 

are formed using crossover and mutation operations. One parent of a new solution is chosen 

based on how well it met the optimization objective and the other is chosen randomly. The 

crossover point (at what point the sample will be swapped) is chosen randomly, and the mutation 0 

operator looks at each value in the sample and with some low probablity changes it.   
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Simulated annealing is another random method that is based on steepest descent. It 

escapes from possible local minima by accepting with some probability a worse solution. As the 

process continues, there is less chance of accepting a worse answer as one would desire. Tabu 

search also accepts new solutions based on a steepest descent design, except that a tabu list is 

used to force the search away from solutions that were examined in recent iterations. 

The computationally expensive part of determining the MVE is that of finding the subset 

of points to be covered by the ellipse. The Effective Independence Distribution (EID) method 

[Poston, 1994] is proposed as a solution to the subset selection problem. As with the other 

methods, it does not provide the exact MVE. However, results will be presented that show that it 

does pick subsets that yield ellipsoids approaching the true MVE. Other aspects that make it 

particularily appealing are the repeatability of an estimate for a given data set due to its 

deterministic nature, and the fact that it is computationally tractable even for large data sets and 

high dimensional problems. 

Some background information on the MVE estimator and the EID method is provided. 

The algorithm for determining the weights such that all of the points are covered is described in 

Hawkins [1993] and is repeated here for completeness. Results are presented that show the 

relative error in the volume of the ellipsoid found using the EID approach for several regression 

data sets where the true MVE is known. 

2. MINIMUM VOLUME ELLIPSOID ESTIMATOR 

The problem of robust estimation of multivariate location and shape is: given a set of n p- 

dimensional observations, find an estimate of location and shape that is resistant to outliers or 



contaminated data. The MVE is one such estimator, and it is known that it has a breakdown 

point that approaches 50% as the number of points in the data set increases. This is the maximum 

possible breakdown point, and it means that approximately half of the data can be arbitrarily 

contaminated without affecting the estimate. 

The MVE is given by the ellipsoid [Hawkins, 1993] 

(x-c)rr_1(x-c) = p (2.1) 

where c and T are the location vector and scatter matrix respectively and p is the dimension of the 

data. The location vector is a weighted mean calculated as 

h 

c = ^WjX* (2.2) 
i=i 

and the covariance or scatter matrix is 

h 

r=Xwi(x;-c)(X;-c)r (2.3) 
i=i 

where x* is a column vector denoting the ith observation in the subset of h points, w,. is the 

weight for the ith observation, and h = [(n + p +1)/ 2] (the brackets denote the greatest integer 

function). The volume of the covering ellipse will be proportional to the determinant of T. It is 

evident from these equations that to find the MVE one must determine which h points should be 

covered and the corresponding weights to ensure coverage of the points. 

The algorithm that will be used to find the weights is credited to Titterington [1975] and is 

described in Hawkins [1993]. It will be referred to in the sequel as Titterington's algorithm. All 

of the weights are initially set to w\0) =11 h, i = l,...,h, which is the usual weight given to points 

when calculating the sample mean of a data set of size h. Then at each iteration k, calculate the 



weighted mean and covariance from Eqs. (2.2)-(2.3) and the Mahalanobis distances for each 

observation given by 

Dlk) = (xi-cwfr-\x'-clk)) (2.4) 

If Djk) < p for every i, then the current ellipsoid using c(k) and T'1, is the MVE covering the h 

observations. If the Mahalanobis distance for any of the observations exceeds p, then the weights 

must be adjusted using the following 

D(k) 

M/(*+D = w(*)±l_ (2.5) 
P 

and the calculations of Eqs. (2.2)-(2.4) are repeated until all of the distances are less than p. This 

procedure enlarges the ellipsoid until all of the h points are covered. 

The algorithm for finding the weights can be somewhat computationally intensive for 

some data sets. However, it should be apparent that the real computational burden arises from 

the determination of which points should be covered by the ellipse. The EID algorithm is 

presented as a means of addressing this problem. 

3. EFFECTIVE INDEPENDENCE DISTRIBUTION 

3.1 The Development of EID from an Eigenvalue Problem 

The derivation of the EID provided here was first given by Kammer [1991]. Subsequent 

research has shown a similar idea proposed by Rousseeuw and Leroy [1987]. They proposed 

using the diagonal elements of the 'hat' matrix to remove outliers from the data set, which of 

course is the purpose also of the MVE. The EID provides a ranking of each point according to 

its contribution to the eigenvalues, and hence to the determinant, of the FIM. It will be shown 

that the EID offers a direct relationship between the determinants of the information matrix as 



points are removed from the data set. Thus, the EID used in the method described here optimizes 

the determinant of the Fisher Information Matrix (FIM), which is defined below. 

The EID is developed from the set of equations familiar from regression theory 

[Rousseeuw & Leroy, 1987]. These are 

y = Xß + e (3.1) 

where y is an n-dimensional vector of responses, X is an n xp matrix of predictor variables, ß is a 

p- dimensional column vector of unobservable parameters that must be estimated from the data, 

and e denotes the noise in the measurements. It is further assumed that 

E[e] = 0 

and 

E[{e-p.)2] = Z 

Without loss of generality, the covariance matrix of the noise, I, is assumed to be the identity 

matrix. Thus, the FIM is given by 

FIM = XTX (3.2) 

and the covariance matrix providing statistical information for the estimate of ß is the inverse of 

the FIM. 

To get a good estimate of the parameters ß, measurements should be chosen that will 

minimize a norm on the covariance matrix. Alternatively, one could maximize a norm on the 

inverse of the covariance matrix. Thus, the objective function will be the determinant of the FIM, 

and it will be the goal of this derivation to show that the EID can be used to delete points in such 

a way that the determinant is optimized. 



The EID is an n-dimensional vector where each element corresponds to one measurement 

location. The development of the EID method given here will show that the ith term of the EID 

vector is the contribution of the ith measurement to all of the eigenvalues of the FIM. Since 

\FIM\ = f\XJ (3.3) 

where (| »|) denotes the determinant, then the eigenvalues are also a measure of the information 

and indicate the contribution of a measurement to the determinant of the FIM. 

The EID can be derived from the following eigenvalue problem 

(F/M-A,.I)¥;=0 (3.4) 

where I is a p x p identity matrix, X. is the jth eigenvalue, and ^ is the jth eigenvector. It 

follows from the definition of the information matrix that the FIM is symmetric. Since the 

columns of X are linearly independent, this implies that the FIM is positive definite. Therefore, 

the eigenvector ^ can be chosen to be orthonormal, [Strang, 1988] which implies that 

4f¥;.=0,   i*j 

and 

Hence, the following matrix properties hold 

^ = I (3.5) 
FIMV^AV 

where Y is an orthonormal matrix with each column containing an eigenvector and A denotes a 

diagonal matrix of eigenvalues. 

Starting from the second property given above and substituting for the FIM, yields 

• 



XrX¥ = AV (3.6) 

Pre-multiplying by xFr and using the first property in Eq. (3.5 gives 

^YX^ = A 

After grouping terms, this can be written as 

(V¥)T(XX¥) = A 

It can be seen from this that the jth eigenvalue has the form 

(3.7) 

(3.8) 

i=i 
^■=E IX v* 

VM 
j = \,...,p (3.9) 

The eigenvectors of the information matrix span the p-dimensional parameter space, so *P can be 

used to transform the data matrix X. The following matrix product is now formed 

G = (X¥)®(X*F) (3.10) 

where ® denotes an element by element matrix multiplication and X¥ represents the transformed 

mode shape matrix. The ij-th element of G is given by 

( p 

8ij Xx*v* 
W=i 

(3.11) 

An examination of each element of G reveals that the sum of the jth column of G equals the jth 

eigenvalue given in Eq. (3.9). 

Hgij=XJ (3.12) 
i=i 

The next step is to post-multiply G by A l forming the following matrix 

E = G_1A (3.13) 

The purpose of this step is to normalize each column of G by dividing by the corresponding 

eigenvalue (i.e., the jth column is divided by the jth eigenvalue).  Each column in the matrix E 



sums to one, and the element exi represents the fractional contribution of the ith measurement or 

data point to ihtjth eigenvalue. 

The EID is calculated by summing the terms in the ith row of the matrix E 

™,=i>„ (3.14) 
7=1 

Thus, EIDi represents the contribution of the ith observation to the eigenvalues of the FIM. 

Again, note that there are n elements in the EID, one corresponding to each point in the data set. 

3.2 An Alternative Calculation of the EID 

The diagonal elements of the following matrix 

H = X(XrX)-,Xr (3.15) 

will also yield the EID values for each observation.   To derive this equation, start with the 

definition of the ith element of the EID 

m-te^tf- (3.16) 
7=1 7=1 A7 

and substituting for the ij-th element of G from Eq. (3.11) yields 

„    (   „    ..    ..,      V m=z±x*¥ki 
7=1 V* 

(3.17) 

These are the diagonal elements of the following matrix product 

H = (X¥A-1/2)(XyA-1/2)r (3.18) 

where A1/2 is a diagonal matrix containing the square roots of the eigenvalues. Rearranging the 

matrices yields 

H = X^A"^rXr (3.19) 

10 



Using the properties in Eq. (3.5), it can be shown that 

FIM'1 = VAV7 (3.20) 

Thus, substituting Eq. (3.2) and Eq. (3.20) into Eq. (3.19), the matrix H can be re-written as 

H = X(XTXr'Xr (3.15) 

and the elements of the EID can be calculated from 

EID = diag(H) (3.21) 

The matrix given in Eq. (3.15) is the familiar 'hat' matrix from regression theory 

[Rousseeuw & Leroy, 1987]. It has some interesting properties that offer some insight into the 

nature of the EID.  One is that it is an idempotent matrix. These matrices have the proerty that 

the trace equals the rank, so 

£ EID; '= rank(H) = rank(X) = p (3.22) 

The EID can be said to show the contribution of the ith measurement location to the rank of the 

data matrix and thus also to the linear independence of the parameter space. 

3.3 Motivation for Using the EID for Subset Selection 

It has been shown previously [Poston & Tolson, 1992] that the following relationship 

holds between the determinants of the FIM as points are removed from a data set 

|xII.X_,.| = (l-£/Di)|x
rx| (3.23) 

where X_; is the data matrix with the ith point removed and EID; is the value for the ith point. 

From this one can see that there is a direct relationship between the determinants as the points are 

removed from the data set. If the objective is to irunimize the determinant, then the observation 

11 



with the largest EID value should be deleted. This is the case for finding the set pf points used to 

determine the MVE. 

The following proposition will be proven [Rousseeuw & Leroy, 1987] about the possible 

range of values that an element of the EIDi can have. 

PROPOSITION: EID, is in the range 

0 < EID{ < 1 

PROOF: Since H is an idempotent matrix, this implies that 

ÄB=(HH)a=X^ 

Since H is also symmetric, the diagonal elements can be written 

Expanding the sum on the right-hand side yields 

2 

This equality can only be true if hä < h\ which implies that 

Q<h,<\ 

or that 

0<EIDi <1 

and the proposition is proved. 

12 



It is instructive to examine what happens if an observation has one of the extreme values 

of zero or one. A data point with a value of one must retained to preserve the linear 

independence of the data matrix X. This is obvious from Eq. (3.23). If such a point is deleted, 

then the determinant of the FIM is zero and the problem becomes singular. In the regression 

setting, this means that all of the parameters ß cannot be estimated. On the other hand, if an 

observation has a value of zero, then the determinant is unchanged and no loss of information 

occurs. 

Recall that the volume of the MVE is proportional to the determinant of T. This is the 

reationale for using the EID to select the subset of data points that is used in the MVE. If we use 

the matrix XTX to approximate the scatter matrix T, then we can use the relationship in 

Eq. (3.22) to successively remove points until the desired h points remain. These h points will 

' then be used in the algorithm described previously for finding the weights and the resulting 

ellipsoid. However, to better approximate the scatter matrix, the data will be centered by 

subtracting the p-dimensional sample mean from each observation. This is repeated as each point 

is deleted. The complete procedure consists of the following steps: 

1. Calculate the matrix 

X'U)=(XU)-XU)) 

where X0) is the set of raw data points at the jth iteration of the method and X0)is an (n-j) x p 

matrix with each row containing the /^-dimensional sample mean for the current set of data. Note 

that at iteration ;'=0 there are n points in the data set, at iteration ;'=! there are n-l points, etcetera. 

13 



2. Use the matrix X'0) in Eq. (3.21) to calculate the EID value for each point in the current data 

set. 

3. Delete the point that corresponds to the maximum EID value. 

4. Repeat steps 1-3 until h points remain. 

5. Adjust the weights using Titterington's algorithm until the h points are covered by the ellipse. 

Some care should be taken with step 3 when implementing this method. It is quite 

possible that in the very first calculation of the n EID values that a data point has a value of one. 

Such a point must be kept to keep the problem nonsingular (see Eq. 3.23). Instead of deleting 

this point, one could remove the observation corresponding to the next highest EID value. How 

this affects the estimate of the MVE is a topic of ongoing research. The chances of an 

observation having an EID value of one becomes greater as the data set is reduced, and it is 

obvious from Eq. (3.22) that when there are only p points left in the set, then each observation 

must have a value of one. Thus, this discussion becomes more critical as more points are deleted 

from the set. 

IV. APPLICATIONS AND RESULTS 

To test the usefulness of this method, it is applied to several data sets where the true MVE 

is known. The paper by Hawkins [1993] gives the correct subset and the resulting volume of the 

true MVE for these data sets. The relative error in the volume of the ellipse based on the subset 

obtained using the EID method can then be determined for comparison purpose. The 6 data sets 

can be found in Rousseeuw and Leroy [1987]. These data are used for regression purposes, and 

14 



only the predictors are used here to determine the MVE. The parameters of interest are shown in 

Table I. From this one can see that the data sizes are relatively small ranging in size from n=20 to 

n=50. The dimensionality of the data is also low, from 2 to 5 dimensions. 

For this study, the EID algorithm is implemented in MATLAB on a 486, 33MHz 

computer. The relative error in the volumes of the minimum covering ellipsoid using the EID 

approach is shown in Figure 1. It is evident from the small error that ours is a feasible approach 

to finding the MVE. 

The time needed to determine the subset of points is given in Table II. Also in this table 

are some timings obtained using Splus 3.1 to determine the MVE estimate of a covariance matrix. 

This software uses a genetic algorithm to find the subset of points. These results are presented to 

provide a very rough comparison of the two methods in terms of the computational effort 

• involved. One can see that using the EID yields a savings in time when calculating the MVE, 

which would become more important as the dimensionality and size of the data set increases. 

The 2-dimensional 'delivery' data set is shown in Figure 2 to provide a qualitative 

assessment of the method. From this, it is clear that the bulk of the data is clustered toward the 

the origin. When the EID method is applied to this data set, the first observations that are deleted 

are the outlying ones in the upper right-hand corner of the plot. It is not until the last points are 

deleted that the EID algorithm makes an incorrect choice. The set chosen by the EID approach is 

shown in Figure 4. Note the point that is incorrectly retained in the set. One reason for this error 

is that the point the EID deletes has a larger magnitude than the one that should be kept in the set. 

Previous studies indicate that these will be the points that tend to have a large EID value 

15 



Finally, one last comparison is in order regarding the 'salinity' data set. It is stated in 

Hawkins [1987] that this set would require approximately 5,000 random starts with the FSA to 

reliably determine the MVE, which is a computationally intensive task. Note that for this data set 

the EID method of subset selection finds a set of points in 0.22 sec with only 3% error in the 

volume of the ellipse. Thus, the EID method achieves a good estimate of the true MVE even for 

data sets where other methods have trouble. 

V. SUMMARY 

In this paper, the EID method of determining the subset of points used in the MVE has 

been described. Subset selection is what makes the MVE a computationally expensive method to 

implement in daily practice. Preliminary results indicate that the EID method for selecting the set 

of points to be included in the MVE estimator is a useful one. The time required for subset 

selection is less than a second for the data sets considered here, and it is expected that for large n 

similar savings in time can be achieved. 

The 2-dimensional scatterplots of the 'delivery' data indicate qualitatively that the EID 

tends to pick a tighter cluster of points. Whereas the set of points making up the true MVE is 

somewhat narrower, yielding a smaller ellipse. This example helps illustrate an important point 

about the MVE. Since it is an ellipsoid of minimum volume, it does not necessarily pick the 

tightest cluster of data. It is suspected that the EID approach might yield better results based on 

some other criterion; e.g., better covariance structure or clustering. These ideas are part of the 

ongoing research in using the EID for the robust estimation of multivariate location and scatter. 

16 



Although the EID method is not guaranteed to find the true MVE, it has certain 

advantages that make it more attractive than the algorithms currenly in use. As discussed 

previously, it involves little computational effort, and thus it is suitable for sets with large n and p. 

Also, due to the iterative nature of the method, it would be easy to get a family of estimators for 

different values of h which is a useful feature [Hawkins, 1993]. 

Since this is a deterministic method, the results are repeatable for a given data set. This is 

a desirable property, because one would like to achieve the same estimate of location and scatter 

for the same data set. Clearly, the methods currently in use are based on heuristic random 

searches, and thus they are not guaranteed to produce the same estimate. This feature coupled 

with the small computational cost makes EID the method of choice in determining the subset of 

points to be used in the MVE estimate of location and shape. 
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Table 1. Regression Data Set Parameters 
Data Set P n                                 h 
Aircraft 4 23                              14 
Coleman 5 20                             13 
Delivery 2 25                             14 

Education 3 50                             27 
Gravity 5 20                             13 
Salinity 3 28                             16 

Table II. Timing (sec) Results for Methods to 
Pick the MVE 

Data Set EID Splus Genetic Algorithm 
Aircraft 0.22 68.0 
Coleman 0.17 67.0 
Delivery 0.11 28.0 

Education 0.77 74.0 
Gravity 0.11 62.0 
Salinity 0.22 50.0 
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Figure 1. Percent relative error in the volume of the MVE as determined by the EID approach. 
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Figure 2. Scatterplot of entire 'delivery' data set. Note that most of the data is clumped near the 
origin. 
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Figure 3. Scatterplot of the h points that are covered by the true MVE. Note the point that is 
incorrectly deleted by the EID algorithm. 
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Figure 4. Scatterplot of the h points chosen by the EID method. Note the point that should have 
been deleted. 
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